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Multiple Instance Learning
In pattern classification it is usually assumed that a train-
ing set of labeled patterns is available. Multiple-Instance
Learning (MIL) generalizes this problem setting by making
weaker assumptions about the labeling information. While
each pattern is still believed to possess a true label, training
labels are associated with sets orbagsof patterns rather than
individual patterns.

More formally, given is a set of patternsx1, ...,xn

grouped into bagsX1, ..., Xm, with Xj = {xi : i ∈ Ij}
andIj ⊆ {1, ..., n}. With each bagXj is associated a label
Yj ∈ {−1, 1}. These labels are interpreted in the follow-
ing way: if a bag has a negative labelYj = −1, all patterns
in that bag inherit the negative label. If on the other hand,
Yj = 1, then at least one patternxi ∈ Xj is a positive ex-
ample of the underlying concept.

The MIL scenario has many interesting applications: One
prominent application is the classification of molecules in
the context of drug design (Dietterich, Lathrop, & Lozano-
Perez 1997). Here, each molecule is represented by a bag
of possible conformations. Another application is in image
retrieval where images can be viewed as bags of local image
patches (Maron & Ratan 1998) or image regions.

Algorithms for the MIL problem were first presented in
(Dietterich, Lathrop, & Lozano-Perez 1997; Auer 1997;
Long & Tan 1996). These methods (and analytical re-
sults) are based on hypothesis classes consisting of axis-
aligned rectangles. Similarly, methods developed subse-
quently (e.g., (Maron & Lozano-P´erez 1998; Zhang & Gold-
man 2002)) have focused on specially tailored machine
learning algorithms that do not compare favorably in the
limiting case of bags of size1 (the standard classification
setting). A notable exception is (Ramon & Raedt 2000).

Generalized Support Vector Machines
We propose to generalize Support Vector Machines (SVMs)
(Vapnik 1998) to take into account weak labeling informa-
tion of the type found in MIL.

SVMs are based on the theory of linear classifiers, more
precisely the idea of themaximum margin hyperplane. For
linearly separable data, the maximum margin hyperplane is
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defined by parametersw∗, b∗ with

(w∗, b∗) = argmax
(w,b),‖w‖=1

min
i

γi, γi ≡ yi (〈w,xi〉 + b) (1)

The minimumγ∗ = mini γi is called the (geometric)mar-
gin and the patternsxi with γi = γ∗ are calledsupport
vectors. The so-called soft-margin generalization of SVMs
with L1 penalties on margin violations amounts to solving
the following convex quadratic program:

minimize H(w, b, η) =
1
2
‖w‖2 + C

n∑

i=1

ηi (2)

s.t.∀i yi(〈w,xi〉 + b) ≥ 1 − ηi, ηi ≥ 0

where the scalarC controls the trade-off between margin vi-
olation and regularization. What makes SVMs particularly
powerful is the generalization to arbitrary kernel functions
K. A kernel function implicitly maps patterns to a new high
dimensional feature space in which an inner product is com-
puted. Since this mapping needs not to be performed explic-
itly, this results in a very efficient non-linear classification
algorithm.

To generalize SVMs for MIL, labels of patterns that only
occur in positive bags are treated as unknown integer vari-
ables. Each bag with a positive label imposes an inequality
constraint on the labels of the contained patterns; for nega-
tive bags, the pattern labels are known to be negative. These
constraints can be incorporated in a generalized version of
SVM learning as follows:

if Yj = 1, then
∑

i∈Ij

1 + yi

2
≥ 1 (3)

if Yj = −1, thenyi = −1, ∀i ∈ Ij

The resulting problem, MIL-SVM, is a mixed integer pro-
gram that bears some similarity to the transductive version
of SVMs (Joachims 1999; Demirez & Bennett 2000). The
goal is thus to minimize (2) jointly over the continuous pa-
rameters(w, b) and over the integer variables (labels of pat-
terns in positive bags).

We propose a heuristic approach in order to find an ap-
proximation to this mixed integer program which cannot be
solved exactly with current optimization methods for large
problem sizes. After initializing all positive bag pattern la-
bels to+1, one alternates solving the quadratic program in



Figure 1: SVM (black), SVM with true labels (yellow), intermediate MIL-SVM (blue), MIL-SVM final (green) and correct
(magenta) solutions on two synthetic data sets. Red and blue circles depict one positive bag and one negative bag on the
left-hand images. On the right, blue circles indicate examples from positive bags that have been re-labeledyi = −1.

(2) using the given labels, with a re-labeling step where the
labels of patterns in positive bags are updated. Alternating
these two steps defines a convergent procedure which will
lead to a local optimum. Our current implementation swaps
the label of a positive bag pattern that leads to the largest
decrease in the objective (2) while not violating constraints
in (3).

Results
We have experimentally verified the proposed generalization
of SVMs on synthetic data, by comparing it with a naive
baseline application of SVMs (labeling all patterns with the
label of the bag they belong to) and with an optimal appli-
cation of SVMs (labeling all patterns with the true concept
label). A proof of concept on synthetic data is shown in
Fig. 1 which shows that the MIL generalization of SVMs
is able to identify superior discriminant functions, which is
also reflected in a significantly reduced error rate.

A second preliminary series of experiments has been per-
formed on a data set of 1000 images from the Corel image
data base, preprocessed with the Blobworld system (Carson
et al. 1999). In this representation, an image consists of
a set of segments (or blobs), each characterized by color,
texture and shape descriptors. Although standard SVMs al-
ready perform quite well, we have been able to achieve rela-
tive improvements in average precision in the range of 10%
(e.g., from 25.3% to 30.3% for the “tiger” and from 43.2%
to 46.0% for the “elephant” category). We are currently in-
vestigating ways to find better optimization heuristics and
are conducting benchmark experiments on a larger scale.
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